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Abstract 

 Recently, there has been an enormous growth of interests in geolocation 

applications that demand an accurate estimation of the user’s location in indoor areas. 

The traditional geolocation system, GPS, which was designed for being used in outdoor 

environments, does not perform well in indoor areas, causing frequent inaccuracies in 

location estimation. Therefore the need for more accurate positioning systems and even 

positioning techniques is a motivation for researchers to turn their attention into indoor 

positioning systems. 

In this thesis we present a unique testbed for indoor geolocation system’s real-

time performance evaluation. Then we present a real-time performance evaluation of a 

sample indoor positioning system. We make a comparison between the simulated results 

of the performance evaluation of the positioning engine and the real-time performance 

evaluation of the positioning system. Finally, we perform a sensitivity analysis for 

Ekahau™ indoor positioning engine. We show that the simulation with the introduced 

testbed yields the same results as one would obtain by evaluating the performance of the 

positioning system by means of massive measurement campaigns. Running the testbed 

for several measurement campaigns for different scenarios enabled us to compare the 

results and study the effect of selected parameters on the performance of the positioning 

system. We also perform primitive error analysis in terms of distance error to verify the 
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validity of the result obtained with the testbed. We show that under the same 

configuration both real-time performance evaluation and simulated performance 

evaluation will yield same result with respect to position error. We also use error 

modeling to determine which error model is best matched to the observed indoor 

positioning error. 

Amongst all of the possibilities of choosing methods of positioning, we focused 

on the Received Signal Strength (RSS) based method along with fingerprinting. Briefly 

said, profiles previously gathered by measurement or simulation will decide on the 

location of mobile terminal if a new profile comes in.  

It is worth mentioning that previous work similar to this testbed has been done for 

outdoor areas [16]. Their work is mainly focused on outdoor environment, in which 

multipath does not exist. In this research effort we tried to analyze the effect of different 

parameters on sensitivity of indoor positioning systems who suffer from multipath. 

Different setups for simulating real-time radio channels have been studied as well [17, 

18], but still not focused on indoor areas.  
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1 Introduction 

1.1 Background and motivation 

Recently indoor geolocation applications have attracted considerable attention in 

the field of telecommunication. Accurately predicting the location of an individual or an 

object definitely can be a difficult task producing ambiguous results because of the harsh 

wireless environment. Applications for indoor geolocation systems can be placed in three 

main categories; commercial, public safety and military applications. In commercial 

applications the need for locating patients in a hospital, guiding blind people or tracking 

small children or elderly individuals is of great importance as well as locating specific 

and important objects in warehouses or in-demand objects in hospitals. Public safety 

application includes locating inmates in a prison or firefighters in a burning building. In 

military applications the main interest is locating soldiers in combat. Recently software 

packages have become available in the market that can locate the predefined object 

almost precisely, but still there is a strong interest for even more accurate systems 

comparable to outdoor geolocation systems such as Global Positioning System (GPS). 

The indoor radio propagation channel is characterized as site-specific, exhibiting 

severe multipath and low probability of a Line Of Sight (LOS) signal propagation path 

between the transmitter and receiver [1]. The two major sources of errors in the 

measurement of location metrics in indoor environments are multipath fading and no 

LOS (NLOS) conditions due to shadow fading [2].  
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Radio propagation channel models have been developed to provide a means to 

analyze the performance of wireless receivers. The performance criteria adopted for 

telecommunication and geolocation systems are quite different [2]. The standard 

performance criterion for evaluating telecommunication systems is the Bit Error Rate 

(BER) of the received data stream, while for geolocation systems the most useful 

performance criterion is the accuracy of the estimated location coordinates. The accuracy 

of location estimation is a function of the accuracy of location metrics and the complexity 

of the positioning algorithms. Since the metrics for geolocation applications are Angle of 

Arrival (AOA), Received Signal Strength (RSS), and Time of Arrival (TOA), models for 

geolocation application must reflect the effects of channel behavior on the estimated 

value of these metrics at the receiver. The existing narrowband indoor radio channel 

models designed for telecommunication applications [2] can be used to analyze the RSS 

for geolocation applications. The emerging 3D channel models developed for smart 

antenna applications [3, 4] might be used for modeling of the AOA for indoor 

geolocation applications. However, the existing wideband indoor multipath channel 

measurement and models [1] are not suitable for analysis of the behavior of TOA for 

geolocation applications. 

Basically the indoor geolocation procedure begins with collecting metrics related 

to the position of the mobile terminal relative to the reference point. Almost any sort of 

metric which is used in telecommunication systems can also be used in Geolocation 

systems. AOA and RSS are the most popular ones but one can use TOA and Phase of 

Arrival (POA) as well. For example, these metrics are used widely in location estimation 
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systems. GPS, which is the most well-known positioning system, estimates the location 

of the desired object by using the TOA of received signal. 

The second step is to process the gathered metrics and estimate the location of the 

desired person or object. This step usually requires signal processing knowledge unless 

the fingerprinting method is used. In using the fingerprinting method, before any location 

estimation is attempted, one should build a grid-network for the place which the system is 

going to be installed and collect the metric according to the location of each node in the 

grid. After building the database for a new location one can measure the new metric 

respective to the new location and compare it with the database to find the best node 

which could be referred to the desired point. Processing the received data is the most 

tedious task in other methods of positioning. Figure 1 shows a block diagram of the 

positioning process. The more reliable measured metrics we have, the less complex the 

algorithm of estimation would be. The final step is to display the estimated location in an 

 

Figure 1: Outline of an indoor geolocation system 
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elegant method with a Graphic User Interface (GUI). 

There are two approaches to building an infrastructure for positioning systems [5]. 

The first approach is to use an existing infrastructure that has already been designed for 

Wireless LAN (WLAN) communications and develop a signaling system that is 

compatible with the existing infrastructure. The second approach is to design a specific 

infrastructure for positioning. Each of these approaches has its own advantages and 

disadvantages. By using existing WLAN infrastructure the design of the signal 

processing part of the positioning system becomes of greater importance. The WLAN 

infrastructures have been developed specifically for telecommunication purposes while 

the design of positioning systems needs very different methods of modeling and 

signaling. On the other hand the cost for developing such an infrastructure for indoor 

positioning is minimal because the infrastructure already exists. Building a specific 

infrastructure for geolocation can be costly and installing the devices may be labor-

intensive.   

In this thesis we introduce a unique testbed for investigating the effects of 

different parameters on a sample positioning engine. We have performed numerous 

experiments have been done to show how parameters such as location of Access Points, 

distance between Access Points, or even number of Access Points can affect the accuracy 

of a geolocation system. 

1.2 Contribution of the thesis 

In this research effort we developed a real-time channel simulation environment 

for laboratory performance evaluation of indoor geolocation systems. The Ekahau™ 
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(http://www.ekahau.com)1 positioning software was used as the test positioning system 

for performance evaluation. The main objectives of this thesis are as follows: 

• Developing a testbed for RSS-based indoor positioning systems 

• Defining a framework for studying the performance evaluation of the 

indoor positioning system. 

• Sensitivity analysis of a sample indoor positioning system to different 

parameters, i.e., number of access points, number of training points, and 

location pattern of access points. 

The core of the testbed hardware was the PROPSim™ real-time channel simulator 

originally developed for real time performance evaluation of wireless communication 

modems. We interfaced the hardware to 2D Ray tracing software to make it suitable for 

simulation of indoor location identification. We described the block diagram of the 

testbed and functionality of each block in addition to the details of hardware modification 

required to develop the testbed. Different measurement campaigns pertinent to each 

parameter are characterized. A specific experiment relevant to each parameter can be 

done to fully explore the effects of the parameter on the accuracy of the system. Results 

from different scenarios are discussed. Finally we discuss on the results and the 

relationship between the results and what has been expected. 

 

                                                 

 

 

1 In this research effort, we used Ekahau Positioning Engine (EPE 3.0) product from Ekahau™. 

Related information can be found in Ekahau™ website : http://www.ekahau.com  
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1.3 Outline of the thesis  

In this thesis we developed a testbed and a framework of laboratory performance 

evaluation of indoor geolocation systems. The remainder of the thesis is outlined as 

follows. Chapter 2 provides an overview of indoor geolocation systems. The system 

architecture and geolocation specific metrics are explained. In addition a classification 

methodology is introduced for RSS-based indoor channel measurements. The importance 

of the fingerprinting method is also examined. Chapter 3 describes the testbed 

development and discusses the details of each block in the block diagram and 

functionality of each block in the entire system. Chapter 4 introduces the various 

parameters that might affect accuracy of a positioning system. Chapter 5 provides the 

details of each measurement scenario1 and discusses on the result and the relationship 

between the scenario and specific parameters. Finally, chapter 6 summarizes the results 

and discusses the future work which can be done through this testbed. 

 

 

 

                                                 

 

 

1 The term “scenario” is used widely in this thesis. All of the experiments are done in the third 

floor of Atwater Kent Laboratories in WPI. However, these experiments are differentiated by the 

configuration of the access points and training points. Each of these experiments is referred to a scenario in 

this thesis. 
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2 Performance evaluation in indoor positioning  

2.1 Background 

The problem of accurately locating a user in an indoor environment has recently 

become both appealing and challenging to researchers. There are emerging civilian and 

military applications for indoor geolocation. In certain applications, the users have an RF 

tag that can be worn and while walking through a building they can be located accurately. 

This could be implemented in schools where the youngsters could be tagged so that the 

teachers knows exactly where they are at all times. In addition this technology can be 

used in hospitals to locate patients or in-demand equipment and medications. The harsh 

site-specific multipath environment in indoor areas introduces difficulties in accurately 

tracking the position of objects or people. The growing interest and demand for such 

applications dictates examining position estimation more carefully. The indoor channel 

poses a serious challenge to system designers due to the harsh multipath environment. 

The behavior of the channel changes from building to building and even within a single 

floor of a building. The channel may vary with added objects and people moving in the 

vicinity. As a result, considerable work is needed for modeling the indoor channel for 

geolocation applications.  

Besides the channel modeling problem, another issue related to indoor positioning 

systems is their performance evaluation. We already know that in communication 

systems data-rate is usually the most important metric and every system is being 

evaluated by data-rate, but in positioning applications the most important metric is 

distance. Multipath would cause a problem in performance evaluation as the channels 
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might change from time of evaluation to the time of actual measurement and deployment. 

Another related problem is the inconsistency of the indoor channels. Since the channel 

changes fast, even in real-time indoor positioning systems the channel may change during 

calibration or evaluation and thus we may be forced to redo the evaluation. These are the 

related issues to performance evaluation. 

Evaluating the performance of systems with the same functionality is the best way 

to compare them. This also gives us the statistics of how precisely the specific system 

works. Defining same scenarios for different systems and evaluating the performance of 

them gives us insights into the pros and cons of using each system. For example in 

telecommunication systems the standard performance criterion is data-rate. So for 

comparing two telecommunication systems we might observe which one provides higher 

data-rate. However, it is also likely that the system whose data-rate is lower has more 

stable response. Therefore in applications where we really do not need very high data-

rate, but we need a more stable system which guarantees us that link between transmitter 

and receiver would work any time, we would rather use the system with more stable 

response. All of this information might be observed by defining the same positioning 

scenario and evaluating the performance of the systems. Of course the systems would be 

exactly in the same situation, i.e. same link between transmitter and receiver, same power 

transmitted, and same environmental situation. The idea of this kind of performance 

evaluation can be generalized to positioning systems. The criterion for comparing two 

positioning systems is different from the criterion in telecommunication systems. In 

positioning systems, since we are dealing with location and we are not concerned about 

the amount of data transmitted and received, it is understandable to define distance as our 
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criterion. If we define the performance evaluation criterion as the error in the difference 

of estimated location and actual location, then we would be able to compare systems 

under the same circumstances.  

For outdoor positioning systems, such as GPS, performance evaluation has 

already been done. But anyhow this is a cumbersome and time consuming task. However, 

for performance evaluation of indoor positioning systems literature did not yield anything 

unambiguous. Running massive measurements is the simplest way to evaluate the 

performance of a positioning system. Although same situation exists for outdoor systems 

in terms of inconsistency of channel, they suffer less because in outdoor areas for a 

specific channel, the number of different paths between transmitter and receiver would 

not be as much as indoor areas. Hence evaluating the performance of an indoor 

positioning system is even more difficult and burdensome. The next issue is that since 

these are real-time measurements, it is obvious that the environment changes and the 

same situation do not exist for comparing systems. This sort of evaluation is also not 

repeatable since channel varies.   

Section 2.2 takes a look at different elements that make up a typical indoor 

geolocation system. In addition, the different design approaches are described with 

complementary examples. Also section 2.2 introduces the different indoor geolocation 

metrics that deal with different aspects of the physical layer. More specifically the RSS-

geolocation based metric is described in more detail since it is the focus of this thesis. 

Section 2.3 discusses in some detail the challenges of performance evaluation of indoor 

positioning systems. 
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2.2 Elements of indoor geolocation and various Indoor 

geolocation techniques 

A typical functional block diagram of a wireless geolocation system is shown in 

Figure 2. It is composed of three elementary blocks. The first block is the location 

sensing block where the desired location metrics such as AOA, RSS, or TOA are 

extracted from the indoor propagation channel.  

Second, with certain accuracy, these parameters are fed to the positioning 

algorithm block, which it produces the (x, y, and z) location coordinates. The algorithm 

receives the measured metrics from the indoor channel with a certain error and tries to 

improve the positioning accuracy. As a result when the metric collection procedure lacks 

accuracy then the positioning algorithm will have to be more complex. For each metric a 

different technical foundation exists. Regarding the metric which one uses the procedure 

and hardware equipment will be different and the accuracy changes. Even the 

 

Figure 2: A functional block diagram of wireless indoor geolocation systems 
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requirement of the system would be different, i.e. bandwidth, time resolution, and etc. 

This thesis focuses on RSS-based indoor positioning. However it is worth mentioning the 

other metrics in order to have an overview of the different available positioning 

techniques. Finally the display system presents the location coordinates for the user. The 

system can provide the coordinates numerically or it can provide them in graphical user 

interfaces on a certain site-specific map. For example, the user can walk around with a 

PDA and can view his own location within a floor, or a worker tries to identify the 

location of a product in a warehouse, then he walks around with his display unit until he 

finds his desired object.   

In general, there are two approaches for wireless indoor geolocation 

implementation. The first approach is to develop a signaling system and a network 

infrastructure of location sensors focused primarily on geolocation application [5]. The 

second is to use an existing wireless network infrastructure to locate a mobile terminal 

(MT) such as Wireless Local Area Networks (WLAN). The advantage of the first 

approach is that the system details are tailored towards the positioning application. The 

focus is on detecting the first path since it is very important in positioning and all the 

system architecture building blocks are designed accordingly. In addition the overall 

design is under the control of the system designer. As a result the system could be 

implemented as small wearable tags or stickers and the complexity and density of the 

locating infrastructure can be customized according to the degree of accuracy needed. 

The second approach has the advantage that it avoids expensive and time-consuming 

infrastructure deployment. On the other hand, more intelligent algorithms are needed in 

such systems to compensate for the low accuracy of the measured metrics. In terms of 
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system implementation when considering the first approach, the advantage is that the 

geolocation system is designed from the ground up. One way to approach it is the 

implementation of super-resolution algorithm for higher time-domain resolution. The 

system captures snapshots in the frequency domain and then through use of spectral 

estimation it is possible to obtain an accurate representation of the time domain. Another 

emerging approach that has better accuracy and potential is Ultra wideband (UWB) 

technology [5]. The large bandwidth provides high time-domain resolution which in 

return provides better ranging accuracy. For the second approach, the use of the network 

infrastructure in indoor geolocation is also feasible but more complex algorithms are 

needed in order to compensate for overall design. One current example is Ekahau 

positioning software, which uses existing WLAN infrastructure. Unlike the other 

positioning technologies, Ekahau does not apply propagation methods that suffer from 

multipath, scattering and attenuation effects. Instead Ekahau collects radio network 

sample points from different site locations. Each sample point contains Received Signal 

Strength Intensity (RSSI) and the related map coordinates, stored in an area-specific 

positioning model for accurate tracking. Ekahau provides average positioning accuracy 

approaching 1 meter. In this research we have analyzed this method even further for 

different measurements conducted for indoor geolocation. The software is compatible 

with industry-standard Wi-Fi (IEEE 802.11b) networks [6]. When it comes to system 

deployment, a positioning model is first created. Then the positioning model is calibrated 

where RSSI samples are collected from the different points on the map. Then the tracking 

or positioning can start once the system is calibrated. In other words, this positioning 

algorithms works with the WLAN infrastructure and no information about the access 
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point locations is required. Such technology depends on complex positioning algorithms 

and does not concentrate on the physical layer. In fact, it uses RSS as a metric instead of 

trying to extract the TOA or AOA which is more challenging task at the physical layer. 

Needless to say, when following the RSS method and bypassing the propagation issues 

the complexities lie in the software itself. 

As mentioned earlier there are different metrics that can be used in indoor 

positioning. Although this research focuses on RSS-based indoor geolocation it is worth 

mentioning the other techniques. In AOA-based indoor geolocation direction-based 

triangulation is used, where two or more reference points (RPs) are used to determine the 

position of the MT. The AOA is usually measured with directional antennas or antenna 

arrays. This metric is not preferable in indoor environment because of the harsh multipath 

which introduces inaccuracies into the detection of the AOA in both LOS and OLOS 

conditions. In TOA-based geolocation systems the important parameter is the TOA of the 

Direct Line of Sight (DLOS) path since it is directly proportional to the physical distance 

between transmitting and receiving antennas. However since the system is not ideal – it 

has finite bandwidth, finite dynamic range, and introduces noise – the DLOS path can 

never be extracted perfectly from a measurement. The most reasonable approximation is 

the first detected path in the profile above a given noise floor. The other paths are also 

important since they can affect the TOA and amplitude of the first path [7]. The strength 

of the strongest path relative to the weakest path provides the dynamic range of the 

system and it is also important. The remaining paths are not very important in 

geolocation. Instead they are more important for telecommunication in terms of multipath 
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Figure 3: TOA example of categorizing paths 

delay spread. An example of the indoor multipath and the geolocation specific parameters 

is shown in Figure 3. 

In RSS-based indoor geolocation, as it is obvious from its name the received 

signal strength is measured at the receiver. The RSS is related to the distance between the 

transmitter and the receiver mathematically in the form of path loss models [5]. The path 

loss models portray the signal power attenuation as the signal travels through the indoor 

environment. If the path loss model is known in advance then the distance between the 

transmitter and receiver can be calculated by measuring the received signal strength and 

comparing to the known path loss model. A wide variety of path loss models have been 

developed for different environments, each with different values of model parameters or 

different parameters and mathematical function forms [1]. The path loss model in indoor 

environment is highly site-specific. For example, the value of power-distance gradient, 

which is a parameter of path loss models, varies in a wide range between 15-20 

dB/decade and a value as high as 70 dB/decade[1]. As a result of the complex indoor 
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Figure 4: Power profile from Ekahau 

radio propagation channel, in practice the RSS-based indoor geolocation technique can be 

accomplished by estimating the path loss model of a specific indoor environment during 

system installation. In addition, there has to be a frequent re-estimation of the path loss 

model of the indoor radio propagation channel in order to establish accurate positioning 

values. An example of an RSS-based geolocation system is Ekahau software which was 

described earlier. Figure 4 illustrates an example of the received power profile of a 

sample positioning system. The measured power is the average power within different 

paths that arrive to the receiver. In telecommunication models the relationship between 

this average power and power gradient has been investigated. 

In spite of TOA-based systems since the metric in RSS-based systems is the 

average power and not instantaneous power, the relationship between received metric and 

error is ambiguous.  The purpose of developing this testbed is mainly to find a method to 

analyze the error with what we had as result from positioning system. 
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2.3 Challenges for indoor geolocation performance evaluation 

As it was mentioned before basically indoor geolocation systems be classified 

into two major categories; network based systems and handset based systems. As it is 

obvious from the names, in handset based systems, mobile station receives the respective 

metric from fixed terminals and computes its location. In spite of that in network based 

systems fixed terminals receive the respective metric from mobile station and then they 

send the information to control station in where the location of the mobile station is 

computed. The network based systems also referred to as network dependent systems, 

depend on the ability of the mobile terminal to receive signal from a mobile network 

covering its area of presence. Conversely handset based technologies, also referred to as 

network independent technologies, can provide location identification information even 

in the absence of mobile network coverage. The prevalent solution in this category is the 

Global Positioning System (GPS). GPS is the worldwide satellite-based radio navigation 

system, consisting of 24 satellites, equally spaced in six orbital planes 20,200 kilometers 

above the Earth, that transmit two specially coded carrier signals, one for civilian use and 

one  or military and government use. The system’s satellites transmit navigation 

messages, which a GPS receiver uses to determine its position. GPS receivers process the 

signals to compute position in 3D – latitude, longitude, and altitude – with an accuracy of 

10 meters or less. To operate properly, GPS receivers need a clear view of the skies and 

signals from at least four satellites, requirements that exclude operation in indoor 

environments [8].  

However, indoor GPS systems have also been developed, that can compute the 

position of a mobile device in a closed environment, such as a building, taking 
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information from pseudo-satellites. Such systems are discussed in the following section. 

A slightly different version of GPS, called Assisted Global Positioning System (A-GPS), 

combines features of both network-based and handset-based technologies, and hence it 

can be considered as a hybrid solution. A-GPS helps to overcome some of the drawbacks 

of pure GPS such as cost, power consumption, and speed to determine location, and the 

line-of-sight requirement, by shifting much of the processing burden from the handset to 

the mobile network. In A-GPS, the network keeps track of location, so that when 

satellites are obstructed, a good estimate of location can be obtained based on last 

reading. A-GPS is accurate within 50 meters when users are in indoor environments and 

15 meters when they are in outdoor areas. Although A-GPS is less costly than GPS from 

a handset perspective, it requires additional investment on behalf of the network. 

Nevertheless, its performance in terms of speed, coverage and accuracy is considered to 

be superior. That is why that A-GPS, augmented with elements from other location 

technologies, is expected to become the solution to which most wireless systems will 

ultimately converge [8]. 

In contrast to the aforementioned technologies that are capable of identifying the 

location of an object or person in open areas, indoor positioning technologies set the 

constraint of a limited coverage range, such as a building or other confined spatial area, 

i.e., a stadium or an exhibition. These technologies are therefore not dependent on any 

‘external’ network. However, they are dependent on a set of technologies used for 

transmitting wireless data in closed environments, such as radios, infrared sensors, 

wireless local area networks (WLANs), and Bluetooth [9]. These technologies are briefly 

reviewed in this section. 
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The first indoor positioning systems that were developed used infrared sensors 

[10]. In these systems, several infrared transmitters, which can automatically send their 

own IDs, hang from various places on a building, such as walls, doors, rooms, and 

corridors. A computing device with an infrared receiver uses these signals to determine 

its current position. However, as intervening objects can easily block infrared signals, 

radio-based positioning has emerged as a more attractive alternative. Most recent 

research in location-based computing has emphasized on newer rapidly developing 

technologies, such as WLAN, Bluetooth, and their associated positioning methods for the 

identification of objects and persons in limited-range areas. As an example of WLAN-

based implementation, RADAR, a building-wide tracking system developed by Microsoft 

Research Group, is based on the IEEE 802.11 wireless networking technology [11]. 

RADAR measures the signal strength and signal-to-noise ratio of signals sent by wireless 

devices, and computes their 2D position within a building. This approach has the 

advantages of requiring only a few base stations, and using the same wireless networking 

infrastructure of the building. Its disadvantages include the difficulty in applying this 

system to multi-floor buildings. Bluetooth, the short-range radio standard for connecting 

devices and enabling point-to-multipoint voice and data transfer, provides higher 

proximity accuracy than WLANs. Therefore, future state-of-the-art location-based 

systems are expected to make use of Bluetooth technology, and several companies have 

already announced Bluetooth location-based services and positioning technology [12]. 

Another relatively new technology used for identifying and tracking objects 

within a few square-meters is Radio Frequency Identification (RF-ID). An RFID system 

integrates an antenna with electronic circuitry to form a transponder that, when polled by 
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a remote interrogator, will echo back an identification number. The advantages of the 

wireless RF-ID system include identification at a distance, hands-free operation, versatile 

memory and processing requirements, and high accuracy due to the very short operating 

range [13]. RF-ID technology has been successfully used in a wide range of markets and 

is expected to play primary role in future mobile location applications since it enables the 

automated data collection and tracking of objects as they move across a limited 

geographical area. 

Finally, the Indoor GPS location identification system focuses on exploiting the 

advantages of GPS for developing a location-sensing system for indoor environments. It 

is now well understood that the GPS signal does not typically work indoors because the 

signal strength is too low to penetrate a building. Nevertheless, Indoor GPS solutions can 

be applicable to wide space areas where no significant barriers exist. Indoor GPS takes 

into account the low power consumption and small size requirements of wireless access 

devices, such as mobile phones and handheld computers. The navigation signal is 

generated by a number of pseudolites (pseudo-satellites). These are devices that generate 

a GPS-like navigation signal. The signal is designed to be similar to the GPS signal in 

order to allow pseudolite-compatible receivers to be built with minimal modifications to 

existing GPS receivers. As in the GPS system, at least four pseudolites have to be visible 

for navigation, unless additional means, such as altitude aiding are used. The signal 

generated by the pseudolites is monitored by a number of reference receivers. Latest 

innovations in this area have delivered receivers to the size of a postage stamp. The small 

footprint combined with ultra-low power consumption and low cost make it feasible to 

apply indoor GPS positioning technology in mass-market applications for the first time. 
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The metrics that are typically used in positioning systems are RSS, AOA, TOA, 

and TDOA. Here we take a glance at the technologies using these metrics in indoor 

scenarios. In RSS-based systems the power the received signals from three different fixed 

stations together with the path loss model of the building form a vector consisting of 

three distances respective to each fixed station. These distances can be used by 

triangulation method to estimate the location of the mobile terminal. Each distance from 

fixed terminal gives us a circle which means the perimeter which the mobile terminal 

must lay. Combining the three circles, triangulation, gives us the exact location of the 

mobile terminal as it is shown in Figure 5[14].  

Considering the error that we have in our measurement system, the result of the 

triangulation would be a region instead of exact location which the transmitter must be 

located. 

In this method the error in location estimation can be caused by multipath, non 

line-of-sight conditions, and local shadow fading. Also the algorithm in solving nonlinear 

equations may cause some error in position estimation. So briefly we can conclude that 

error in RSS-based methods would be substantially related to the environment properties 

 

Figure 5: Triangulation 
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(multipath, NLOS, and shadow fading), path loss model used, number of fixed terminals 

uses, and the algorithm used to estimate the location. 

AOA-based systems use the angle of the arriving signal to determine what are the 

logical areas which the mobile terminal can be located in. In these systems received 

signal from two fixed terminals would be enough to determine the location of the mobile 

terminal as it is shown in Figure 6[14]. 

Error in estimating direction of the arriving path is most likely due to multipath, 

NLOS, and the accuracy of the antenna array system been used. The algorithm been used 

to derive the location is also important. Similar to RSS-based systems the number of 

fixed terminals and relative location of them to mobile terminal is also important. 

 

Figure 6: AOA-based range estimation 
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Figure 7: TDOA triangulation 

TOA is another metric which have been used in many positioning systems. Since 

the speed of the signal is known the time that first path arrives in receiver is directly 

related to the distance between mobile terminal and fixed terminal. Triangulation is used 

to determine the exact location of the mobile terminal considering the time that first path 

has arrived. For this purpose the transmitter and receiver should be synchronous which is 

costly and needs more complicated circuitry both in transmitter and receiver. To solve 

this problem we may use time difference metric which is the relative times that signals 

arrive in receivers. Each metric in this system will give a hyperbola, with the foci on 

receivers, on which a transmitter must lie. Figure 7 shows us an example of such systems 

using TDOA. Intersection of the hyperbolas gives the region that transmitter must lie. In 

 

Figure 8: Offline Phase of fingerprinting 
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this case just receivers should be synchronous to each other [14].  

Error would occur in case of having multipath, NLOS, and inaccuracy in 

algorithms were used in our system. Time-synchronous property would also play a major 

role in determining the location of the mobile terminal accurately. 

Besides using metrics directly, there is another method to determine the location 

of the mobile terminal, fingerprinting. Fingerprinting basically means building database 

with respect to the received signal’s metric related to the present location of the mobile 

terminal. Operation of such systems has 2 phases, named off-line phase and on-line 

phase. 

Off-line phase is the data collection phase or learning phase. The major portion of 

this phase involves roaming around in the site and collecting data. Recording the set of 

information as a function of the user’s location covering the entire zone of interest, we 

can form a database consisting of fingerprints. Each fingerprint corresponds to fingerprint 

information associated with a known user’s location. 

Real-time phase or on-line phase is the phase of matching the obtained fingerprint 

for the specific location and compared with the database. A pattern matching algorithm is 

then used to identify the recorded information closest to the new specific fingerprint. 

 

Figure 9: On-site phase of fingerprinting 
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3 A testbed for performance evaluation of indoor 

positioning systems 

 In this chapter we discuss a testbed for Real-Time Performance Evaluation of an 

Indoor Geolocation Systems using PROPSim channel simulator. Nowadays most of the 

positioning systems use RSS-based fingerprinting method which is dependent on building 

a database. The reason for developing such a testbed is that today there is no way to 

evaluate the performance of a positioning system except running massive measurements. 

Running massive measurement to build database for positioning systems is both 

time consuming and costly to do. Roaming around the whole site, we should collect 

enough metrics and information for each point. Accuracy of the positioning system is 

closely related to the number of nodes in database and distribution of them. For example 

for a typical indoor area, at least we should gather information for nodes as close as 2-3 

meters to each other if we want to have an accurate positioning system. Collecting this 

much information is very time consuming. This way also is not repeatable and every time 

we do the measurement we may get different error.  

With this testbed we can run the whole experiment in the lab and evaluate the 

performance evaluation of a positioning system without gathering real data from different 

locations. Also the scenario is repeatable with this testbed, so we can compare the results 

of one positioning system with another one and compare the results. This method also 

reduces the cost of developing such a database. 

The intuition here is to use a real-time channel simulator for performance 

evaluation of a positioning system. With the aid of this real-time channel simulator we 

can simulate the channel between transmitter and receiver antenna. We can divide the 
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Figure 10: Block Diagram of the testbed 

testbed into two main parts, software and hardware. Hardware of the testbed mainly 

consists of three parts, named channel simulator, wireless antennas, and server. Channel 

is responsible to simulate the channel between transmitter and receiver. Wireless 

antennas are mainly wireless access points transmitting and receiving.  

Figure 10 shows us the block diagram of the testbed. As you can see the main 

block in this block diagram is the PROPSim real-time channel simulator.  

We can categorize these blocks into two groups, software-oriented and hardware-

oriented. Ekahau and Ray Tracing blocks are software oriented while PROPSim is 

hardware. We will get into the details of them in this section. 
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3.1 EKAHAU positioning engine  

3.1.1 General description 

The Ekahau positioning engine (EPE™) is a powerful software tool which is able 

to locate the target and provide the coordinates (x, y, and floor) corresponding to each 

client. The main concept of this research is using this real-time testbed to evaluate the 

performance of EPE™ software in the laboratory. EPE™ uses RSS-based system with 

fingerprinting method which enables us to locate the mobile terminal. Figure 11 shows us 

block diagram of the infrastructure of EPE™ system. This software communicates with 

any Wi-Fi-based (802.11 a/b/g) access points in the building to locate an object. 

Installing EPE™ is able to work with existing infrastructure that has been built for 

telecommunication purposes. The software consists of four components. 

Ekahau client™: which is a small software module running on the client device. 

 

Figure 11: Ekahau Block diagram 
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The client device can be a PDA, laptop, or Wi-Fi tag.  

Ekahau positioning engine™: This service would run on a PC or laptop as server 

to calculate the coordinates and/or other properties of the client. 

Ekahau manager™: is an application for recording field data for a positioning 

model and calibration, analyzing data and tracking the object. 

Ekahau application framework and SDK™: is a set of helpful tools and easy 

programming interface for authorized applications to quickly utilize EPE location 

information. 

 In using Ekahau software, we must first define a new positioning model by 

inserting the floorplan of our chosen scenario. Then we define paths and trails for our 

 

Figure 12: Ekahau Representation 
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model. These paths are the routine paths within we may wish to track specified objects. 

Subsequently, we must calibrate our model by walking around the building along those 

paths that we have defined for software and start collecting data by measuring the 

received power from different accessible access points. Every few meters we can gather 

information by reading the received power from access points. This will build our 

database as we walk through all the routine paths in the building and collect data. The 

more data we collect, the more accurate our location estimation can be. After collecting 

data, we can locate the desired target which can be either a laptop or PDA. We can 

visually analyze the positioning error vectors and statistics to find areas where additional 

access points or calibration sample points are needed. 

3.1.2 Ekahau Algorithm 

The conceptual development of location estimation has been solved geometrically 

by engineers since ancient times [15]. This approach needed exact measurement of the 

preferred metric since triangulation had been used. The new and unique approach to this 

problem is the statistical model approach which has been used in Ekahau software to 

locate the desired object. 

In this approach signal metrics, such as RSS or AOA are treated as random 

variables which are statistically dependent on the location of transmitter, receiver, and the 

propagation environment. Because of this dependency an observation of a sample of 

signals metric leads us to a conclusion about the metric which will lead us to the location 

afterward. 

The difference between these two approaches is quite evident. In geometric 

approach people are interested in mapping the metric into location while in statistical 
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modeling approach it is vice versa. The reasoning goes from location to signal properties 

in statistical modeling approach by means of dependency of signal properties and 

location. The problem is an inverse problem which is going to be solved then. In 

statistical terms, the propagation model is sampling distribution whose parameters are 

directly related to the location. 

The problem of incompatible measurement is not present in the statistical 

modeling approach in contrast to geometric approach. It should be mentioned that 

although every unlike obtained measurement is possible but if the propagation model 

does not fit the actual propagation phenomena and environment the result of location 

estimation will not be accurate. To enhance the accuracy of statistical modeling approach 

one can use other propagation models rather than using more complicated transmitters or 

receivers to enhance the metric observation. Even more sophisticated models like neural 

networks or ray tracing can be used to enhance the accuracy of this approach.  
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3.1.2.1 Description of the problem 

Given a set of n distinct locations 

},...,2,1{),(;},...,,,{  L 21 niyxlWherelll iiin ∈==  in area Α and their associated 

observations where },...,,O,{O  O 21 nO= },...,2,1{},...,,{ 21 nioooO ikiii ∈=  for k 

observations in location , il ),...,,( ,,2,,1,,, mjijijiji rrro =  where vector 

representing RSS values from m different access points (AP
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1-APm), find the most 
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Figure 13 shows a similar scenario with m = 5 (AP1-AP5). We want to estimate 

the location of MH, given is the RSS values it receives from 

AP
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1-AP5 respectively, and each point on the grid represents a reference point in which 

there is an associated RSS profile in a reference database. 

We denote probability of observing ),...,( 21 mrrro = ; where r1, r2 …rm represent 

l1(x1,y1) l2(x2,y2)

ln(xn,yn)
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Figure 13: Example of geolocation problem 
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RSS values from AP1, AP2 … APm respectively; as  and p(l) are the prior probability 

of being at location l. we obtain the posterior distribution of the location by applying 

Bayes rule: 
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where and  are conditional probability distribution functions of 

being in location l given observation 

)|( olPl )|( loPo

),...,( 21 mpppo = , and probability distribution 

function of observing o  given location l, respectively. Generally, the prior probability 

density function of p(l) is a mechanism to incorporate previous tracking information to 

this system. Here for simplicity we assume that l has a uniform distribution. Total 

probability  does not depend on the location l, thus it can be considered as a 

normalization factor. Application of these assumptions reduces (1) to (2) where η is a 

constant normalization factor. 
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The probability density function  is called the likelihood function which 

in a discrete domain gives the probability of an observation, given the location.  Equation 

(2) shows that estimation of the likelihood function leads to finding . The 

posterior distribution function  can be used to find the optimum location 

estimator based on any desired loss function. In particular, using expected value of the 

location, minimizes the mean squared error, and (3) shows this estimation. 

)|( loPo

)|( olPl

)|( olPl

 31 



 

[ ] )'|(.'.)'|(..')|'(.'|
'''

loPlloPlolPlolE o
Ll

o
Ll

l
Ll

∑∑∑
∈∈∈

=== ηη                       (3) 

 

Note that we can extend the above discussion to a two dimensional case where      

l = (x,y) and hence: 

 

[ ]

[ ] )'|(.'.|

)'|(.'.|

'

'

yoPyoyE

xoPxoxE

o
Yy

o
Xx

∑

∑

∈

∈

=

=

η

η
                                                                  (4) 

Thus, in order to implement this system we need to generate a likelihood function 

from a set of training data. There are several examples of such likelihood functions. Here 

we present the kernel method. 

3.1.2.2 Kernel Method 

We assign a probability mass to a kernel around each observation for a given 

location. Suppose we have k observations at point l. Equation (5) defines the prospective 

likelihood function.  
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K(o,oi) denotes the kernel function. If we assume that RSS (rt) from access point t 

is a Gaussian (µ = pt,σ2) random variable; where σ2 is an adjustable parameter; moreover 

consecutive values of pt are independent,  we can use a Gaussian kernel defined by (6). 
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Applying (6) in (5) results in: 
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Figure 14: Kernel generated plots 
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Example: Lets consider the following observations (0.1 , 0.11 , 0.18 , 0.27 , 0.3 , 

0.32 , 0.33 , 0.36 , 0.6 , 0.65) in a location L. This corresponds to RSS values from a 

single access point in a number of trials at a fixed location L. Figure 14 shows the 

resulting likelihood functions for different values of σ. 1

3.1.3 Implementation 

3.1.3.1 Generating the Kernels 

In order to apply (7) in its most generic case, we need to collect k different 

training vectors in each reference point for a reasonably large value of k. One way to 

reduce the excessive amount of measurements and also reduce the complexity of the 

system is to group the reference points in different clusters . Two different 

strategies for clustering are discussed in the next section. Our assumption is that training 

vectors in a cluster are collected from a single location (center of the cluster). Using this 

assumption we apply (7) in each cluster and create N likelihood functions defined by (8). 

},...,,{ 21 Nccc

                                                 

 

 

1 This example has been worked out by Mr. Ahmad Hatami for the purpose of algorithm 

development based on [15] 
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Where  

Cj : Center of the j’th cluster 

Kj : Number of reference points in j’th cluster 

Ri,j
(l) : RSS from l’th access point in i’th point of cluster j 

 

3.1.4 Positioning algorithm 

Step 1: Generate N kernel functions as mentioned in the previous section. 

Step 2:  Compute the normalization factor η for the measurement 
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Step 3: Find the expected value for x and y coordinates. 
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3.1.5 Real-time performance evaluation of Ekahau 

Like any other geolocation system Ekahau has some limitations in terms of 

number of training points and number of access points when it comes to real world. For 

the purpose of studying the accuracy of this engine we did some measurement in the first 

floor of Atwater Kent Laboratories in WPI. We started with placing seven access points 

in the floor which would be able to communicate with Ekahau.  

These access points were initiated to work in different channels, the configuration 

which gives us the least interference between channels. Two of them were working on 

channel eleven and the next two were working on channel six and the others were 

 

Figure 15: Configuration of access points and training points 
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working on channels one, four, and eight. The access points with the same working 

channel were placed as far as possible from each other. This configuration with the 

details of channels and their location is being shown in Figure 15. 

Next step was to decide on the number of training points for our scenarios. We 

came up with two scenarios with the same configuration of access points but different 

number of training points. The first scenario included just four training points while the 

second one had thirteen training points. Figure 15 also illustrates the location of four 

training points corresponding to the first performance evaluation scenario.  

For this case we tried to pick the four training points in a way that all of the 

estimating points could be categorized in one of these points neighborhood. Since each 

training point was at least close to one of the access points in the corresponding power 

profile the received power of the respective channel  

Ekahau’s estimation of the location was compared to the actual location of the 

mobile terminal which in our case was a laptop. The procedure was repeated for 138 

points which would give us the best estimation of the performance evaluation of the 

positioning engine.  

The error was measured in terms of horizontal error and vertical error which gives 

a degree of freedom in analyzing the error which comes next. The orientation of error has 

been considered in the procedure as well. We named the origin the lower left corner of 

the map, so if the estimated location is to the right of the actual location the error would 

be considered as a positive value and if it was to the left of actual points, error was 

considered as a negative value. The same procedure has been applied for Y-direction 
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which positive error meant that the estimated point is upper in map comparing to the 

actual location and negative if the estimated location is lower.  

Table 1 gives us the statistics of error. 

As it can be read from the table, X-error is more distributed, ranging from -31 

meters to 30 meters. This can be justified by considering the location of training points. 

As you can see training points are close to each other in Y-axis and far from each other in 

Y-axis. In other words, since the width of the floorplan is less than the length of it, range 

of possible values for Y-error is less than X-error.  

Since this experiment was done with just inefficient number of training points of 

four, the results are not impressive. The large amount of variance is telling us the error is 

very dispersed in X, Y directions. Although perfect positioning engines are those which 

are able to get trained with as few training points as possible, but apparently for this 

special engine four training points were not enough. Most of the applications can not take 

the risk of having 10 meters of error in estimating the location of object.  For getting an 

estimate of how close the engine can estimate the location of object Table 2 will help us. 

Table 1: Error statistics for sample campaign I 

4TP MEAN  VARIANCE MIN MAX 

X-error -1.64 88.08 -31.63 30.44 

Y-error 4.04 40.1544 -17.56 24.88 
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Table 2: Error statistics for sample campaign I 

4 TP MEAN VARIANCE 

X-error 10.7306 88.08 

Y-error 6.2516 40.1544 

 

Although the table shows us that the average error in X direction is around 10 

meters and in Y direction is about 6 meters, but if we consider the error as the distance of 

the estimated location to the actual location, i.e. 22
errerr YX +  we can find that the error in 

distance is 16 meters which is definitely not suitable for many of the applications.  

Figure 16 shows us the CDF of this campaign which is the distribution of the 

error. It can be seen that the graphs looks like normal distributed cumulative density 

functions centered on zero. In chapter 4 we will go through the details of the analysis of 

the graph errors. 
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The second measurement campaign consisted of 13 training points and the same 

configuration for the location of access points and estimating points. It could be predicted 

that the result the result of this campaign are more accurate are reflect less dispersion in 

spatial error. Table 3 gives us some statistics of this campaign. 

Table 3: Error statistics for sample campaign II 

13TP MEAN  VARIANCE MIN MAX 

X-error 1.6155 89.4620 -22 42 

Y-error 1.7079 69.8067 -31.4 28.6 

 

Figure 16: Ekahau performance in sample campaigns  
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 Amazingly enough by increasing the number of training points by a factor of 

approximately 3, error in X and Y direction did not seem to change a lot. There were 

points in the floorplan which had large errors. The positioning engine’s algorithm was 

unable to locate these points accurately. This should be noted that the purpose of this 

thesis is not to investigate the positioning engines and improve their capabilities but to 

develop a testbed which behaves the same way as if the positioning system was working 

in real environment.  Table 4 below lets us take a closer look at the result of this 

campaign in terms of error. 

The information in this table shows us that there was an error reduction in our 

system. One can easily notice that the X-error has been reduced to 5 meters from 10 

meters previously, and Y-error has been reduced to 4.5 meters instead of 6.25 meters. 

The fact that both campaigns show the same behavior in terms of dynamic range of error 

and variance would let us conclude that there were few points in this campaign which had 

large errors. This result could be a glitch in their software as well as a glitch in their 

algorithm. Otherwise in the other points the positioning engine was working fine 

comparing with first campaign.  

Figure 17 illustrates the cumulative distribution function of the error for the 

second campaign. It can be observed from this figure that error has been reduced in its 

Table 4: Error statistics of campaign II 

13 TP MEAN VARIANCE 

X-error 4.9888 89.4620 

Y-error 4.6727 69.8067 
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Figure 17: Ekahau Performance, second campaign 

average for both X and Y directions but the dispersion has been remained the same for 

both X and Y directions. Since the graphs are steeper around zero one can conclude that 

the average of error has been decreased. The compression of the graph around zero 

actually yield the fact that the positioning engine was working better for the second 

campaign making smaller errors in both X and Y directions. More detailed discussion is 

left for chapter 4 in which we discuss the result of the testbed and the error analysis. 

 

3.2 PROPSim channel simulator 

The core for Real-Time channel simulation is PROPSim. PROPSim C8 wideband 

channel simulator simulates the real-time radio channel between a transmitter and 
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receiver. It is a very versatile and powerful tool for the development of wireless systems. 

Basically the channel simulator works based on the tapped-delay line method where it 

can generate different models and channels between the input and output of the each 

PROPSim’s channel. The user’s RF input signal is downconverted into analog complex 

baseband signals. These signals are filtered then converted to digital signals using A/Ds. 

The multipath fading and simulation and summing of taps is carried out in digital parts 

utilizing DSP technology. After fading, the original signal is D/A converted and 

upconverted back to the original RF frequency. 

Each radio channel is considered as a combination of different paths arriving from 

transmitter into receiver with different amplitudes, different delays, and different phases. 

PROPSim also uses this approach to simulate the radio channel between its input and 

output which are necessarily the transmitter and receiver of the user’s system. The 

properties of each tap are definable. Delay, mean amplitude in dB, and fading are the 

parameters that user can define for each tap which represent a path between transmitter 

and receiver. Delay of each tap can be set as static (fixed), random hopping, sinusoidal, 

or linear. Amplitude of each tap is fixed. Fading has the most diverse set of options. One 

can set the fading to classical (Jakes model), constant, flat, Nakagami, pure Doppler, 

Rice, lognormal, Suzuki, Gaussian, or even custom fading model. Defining no fading for 

taps of a channel will make that channel to have static delay which means delay is the 

same all the time. Figure 18 shows us an example of definition of such a channel. 
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Figure 18: A sample channel model generated with PROPSim 

Besides properties of each tap the whole model has some properties as well. 

Amongst them one can highlight center frequency which is the frequency of the input 

signal and wavelength, sampling density, sample distance, mobile speed, estimated 

simulation time, number of impulse responses, number of wavelengths, design accuracy 

option, number of channels, distribution seed ( when the same model is regenerated with 

the same seed, the result is exactly the same as the original. If the seed is changed, new 

channels are not correlating with the original ones). By ignoring the effect of fading in 

PROPSim taps actually we have ignored the effect of movement in positioning. In 

dynamic methods of positioning this causes problems for tracking the desired object since 

the effect of movement of the object and the effect of moving objects around both have 
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been neglected. But in static methods like fingerprinting one can use this feature to just 

simulate the channel between transmitter and receiver. The channel would then become 

an element of the database which the desired metric can be extracted from. Other 

parameters of a tap are also definable which make PROPSim suitable for DOA or AOA 

methods. 

There are eight independent channels in PROPSim and each channel has its own 

input and output. Each channel’s bandwidth is 70 MHz so it is quite enough for RSS or 

AOA measurement methods but for TOA method there will be shortage in our setup 

system.  

From user’s point of view, there are predefined channels available in PROPSim’s 

software such as JTC and GSM models but one can define his own models based on Ray 

Tracing method or even new methods which are going to be developed. Since in this 

thesis the main problem was around indoor positioning systems, WLAN frequency was 

then used for center frequency of each channel. These frequencies are in 2.4-2.48 GHz 

band. Each channel has to have its own specific center frequency, but due to limitations I 

used the same center frequency for all of the channels in my experiment which degrades 

the outer channels a little bit. So in order to being more accurate about the measurement 

one can set the local frequency of each channel which is an input to system to the desired 

center frequency and set the parameter in simulation to that specific frequency. Whereas 

Ekahau has this property which tells the user about the channel being used for calibration, 

one can easily find the center frequency of the channel which should be set for 

PROPSim’s respective channel. It is very straightforward to connect the signal which 

comes an access point to an input of PROPSim. Most of the new access points have this 
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ability to shut down the wireless antenna and send the signal out through a connector. But 

what has been done in this project was that we chose access points as fixed stations which 

had the property that instead of antenna PCMCIA cards function as transmitters and 

receivers. Taking advantage of this idea the problem of connection then solved by 

connecting PCMCIA cards to PROPSim’s BNC input connectors. 

Each PROPSim channel has two ports, one input and one output. The RF local 

frequency block is necessary for every channel to work properly. The input to each 

channel is being transferred into baseband with the help of this local frequency generator. 

Then it is been transformed into digital and then it goes into the channel which is an FIR 

filter. So the core of PROPSim is digital baseband filtering and simulating. 

3.3 Place Tool Ray Tracing Software 

PlaceTool™ is ray tracing software which is used to find the entire set of paths 

between transmitter and receiver. According to the floorplan of the building and 

reflection and transmission coefficient of each wall PlaceTool decides on the number of 

the arrived paths, their respective amplitude, and their delay. One can also include details 

of the floorplan of the test environment, like tables, metal cabinets, file cabinets and etc. 

We used PlaceTool software developed at CWINS to simulate the channels as the inputs 

of PROPSim. 

  Defining the floorplan as a combination of lines with different coefficients is the 

first step to find the multipath between transmitter and receiver. Placing the transmitter 

and receiver in the map afterward will be the next step to complete the procedure. Finally 

the software can calculate the multipath, their respective amplitude and delay. Importing 

these files to MATLAB will let us change them in a readable format by PROPSim 
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software. Since ray tracing is a static environment, i.e. does not give you fading 

properties of the path, I set the fading properties of channel in MATLAB process. The 

output files should contain the amplitude, delay and type of delay, and fading which all 

has been done in MATLAB. 

 

 

 

Figure 19: PlaceTool ray tracing software 
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4 Performance analysis 

In this chapter we go into the details of the scenarios that we defined for testbed 

and the results. We try to compare different scenarios in terms of the difference between 

number of access points and number of training point. Another experiment that is 

conducted is related to the configuration of access point and effect of that parameter on 

the accuracy of the system. Statistics of the error is represented for each scenario 

separately which let us compare them later on. All the scenarios were done in the third 

floor of Atwater Kent Laboratories in WPI.  

4.1 Introduction 

The purpose of this section is to discuss the results of the simulation for 

performance evaluation and compare the results with real world measurement. The first 

experiment consisted of three different scenarios regarding the number of access points 

used in each scenario. Each scenario was divided into three cases in which the number of 

training points used Ekahau is changed. In all of the cases the first step is to define the 

location of access point(s) in PlaceTool ray tracing software. Defining the location of 

training points in PlaceTool and running the software gives us the entire channel response 

between each training point and access point(s). By importing these channel responses 

into Matlab® we can process them and turn them into PROPSim readable files. Next step 

is to use each of the processed files to simulate the channel between receiver and 

transmitter in PROPSim. After channel simulation Ekahau can be trained on the desired 

point. Repeating these steps for all of the training points will give us an option to train 

Ekahau with as many training points as we want. The interface between access point(s) 
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and PROPSim is MC-card-BNC cable and same cable is used for the interface between 

PROPSim and the PCMCIA card in Ekahau.  

 

4.2 Empirical results versus simulation  

 

The first case we try to investigate is case I from scenario I in which we had only 

one access point and just four points as Ekahau’s training points. The locations of these 

training points have been shown again in Figure 20. After calibration four numbers of 

independent points were selected to see how accurate Ekahau determines the location of 

the mobile terminal. The error was then calculated by the means of displacement of the 

estimated location from actual location. Obviously in this case the result was poor due to 

the fact that just 1 access points was considered and the number of training points was 

also few. The result for this case has been given in Table 5.    

Table 5: Error statistics of case I from scenario I 

SCENARIO  MEAN(M) VARIANCE(M2) RMSE(M) P(90%)(M) 

Case I 13.1903 31.8125 14.3288 26 
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Figure 20: Location of access points and training points for the case I from scenario I 

Where RMSE stands for root mean squared error and P(90%) is the distance the 

with probability of 90 % error is less than that. So as it is obvious from table 1 that in 

90% of places, location estimation errors were less than 26 meters. 

The concept of this graph and its parameters and what they discuss will be 

discussed later on in this chapter. Briefly from this curve an approximation can be made 

to our distance error and one can model the error with respect to the parameters that he 

 

Figure 21: About points A, B, and C which have the same power profile but large displacement 

 50 



 

Figure 22: Comparison between simulation and real-time result for case I from scenario I 

gets from the curve. 

As it is obvious from table in this case due to lack of RSS information for Ekahau, 

it could not estimate the exact location of the mobile terminal. For illustrating that how 

these large errors could happen, Figure 21 will help us. As you can see in this case the 

received power from the same access point in points A and B were equal. So in 

estimation procedure one of the points can easily be picked as the desired point falsely. 

After simulation I created the scenario in real world by putting an access point 

exactly on the same spot as we simulated the case with. Then I calibrated the Ekahau 

Table 6: Simulated Error statistics for case I from scenario I 

SCENARIO I MEAN(M) VARIANCE(M2) RMSE(M) P(90%)(M) 

Case I 11.4938 66.4658 14.0039 24.5 

 51 



software with the same four points that I calibrated the software with in simulation. The 

statistics of this case is shown in Table 6 

As you can see the results of the real world calibration and simulation calibration 

match to each other in mean, RMSE and P(90%). The only difference is in variance that 

since the case had just one access point and only four training points, it could be 

predicted that the location estimation errors would be large enough to make such a high 

inaccuracy in location estimation. 

Figure 22 above illustrates the comparison between CDFs of the two cases and 

one can observe the fact that simulation for location estimation follows the exact pattern 

that real world measurement performs. 

The second case for comparison between real-time measurement and simulation is 

Table 7: Error statistics for case III from scenario III 

SCENARIO III  MEAN(M) VARIANCE(M2) RMSE(M) P(90%)(M) 

Case III 1.2301 4.196 2.3761 5.6 

 

Figure 23: Location of access points and training points for case III from scenario III 
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the case where we had three access points, scenario III, and we had twenty seven points 

for training of Ekahau. Figure 23 illustrates the location of access points and training 

points for this case. Since this case had the most number of access points and training 

points, we could expect that the error would be the least between all of the other cases. 

Table 8 provides the statistical information about this case. As we can see great 

enhancement in terms of location estimation has been achieved by both increasing the 

number of access points and number of training points. Details of improvements are 

going to be discussed in the next two sections of this chapter.  

Further the real world measurement with the same set of access points and 

training points will give us the same result with minor differences in statistics. Table 8 

provides the information for real world measurement. 

In Figure 24 we can compare the CDFs of the real world measurement and 

simulation of location estimation. 

The justification given above about the simplest case and the most comprehensive 

case in our simulation profile gives insight into how we can relate these two sets of 

location estimation. Although there were minor differences in average and variance of 

error, one can claim that simulation with a perfect approximation will result in the same 

location estimation that real world calibration does.  

Table 8: Simulated Error statistics for case III from scenario III 

SCENARIO III  MEAN(M) VARIANCE(M2) RMSE(M) P(90%)(M) 

Case III 1.6729 2.313 2.2453 3.5 
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Figure 24: CDF of error for case III from scenario III 

The purpose of designing the testbed was to find a way to estimate the location 

without having to carry out massive measurement campaign and this justification will 

allow us to use this testbed instead of real calibration in a specified site. 

Analyzing the effects of various environmental conditions and effects of set up 

requirements for location estimation is also made easier by using this testbed which we 

discuss in the next few subsections. 

4.3 Effect of number of training points 

In this section we discuss the effect of the number of training points used for 

Ekahau. In every scenario we started with four number of training points and then we 
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Table 9: Error statistics for different cases of scenario 

SCENARIO I MEAN(M) VARIANCE(M) RMSE(M) P(90%)(M) 

Case I 13.1903 31.8125 14.3288 26 

Case II 13.7574 24.789 16.1235 25 

Case III 9.5309 21.9344 13.3944 21 

examined the case with ten number of training points and finally we used twenty seven 

number of training points to train Ekahau.  

First we discuss scenario I in which one access point was used for calibration. 

Figure 20 illustrates the location of access points and training points for case I, i.e. the 

number of training points were four.  

Figure 26 shows the locations of the only access point involved and the set of 

training points for case II with 10 as a number of training points. And finally one can find 

the locations of access point and training points by noting the fact that location of the 

access point was the same for all the cases of this scenario and locations of training points 

were similar to the location of training points in Figure 26. 

Table 9 provides the statistics of these three cases while Figure 25 illustrates the 

CDFs of error for scenario I.  

 55 



So as it can be seen from Figure 25 that although by increasing the number of 

training points from 4 to 27 we enhance the location estimation procedure but the fact 

that database was built with data from just one access point has affected the improvement 

and it can be seen that the error in location estimation has been just reduced to 9 meters 

instead of 13 meters. This illustrates the importance of the number of access points used 

in the training sequence. The greater the number of access points we use, the more 

accurately the software can predict the location.  

 

Figure 25: Comparison of three cases from scenario I 
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Figure 26: Location of access points and training points for case II of scenario II 

Another good diagram which illustrates the comparison of the three different 

cases is Figure 27 in which all of the averages and standard deviations have been shown 

together. 

In Figure 27 it can be seen that though the average of error decreases from the 

first case till last case but standard deviation increases. An explanation for this 

 

Figure 27: Comparison of mean and variance of error 
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phenomenon is that as we increase the number of training points, number of points with 

similar power profile increases and so does error. In addition standard deviation of error 

increases as we increase the number of training points. This is due to the fact that with 27 

training points either we are close to the real location of mobile terminal or we have a 

large error.   

As we saw in earlier chapters one access point is not enough not only for TDOA 

and AOA metric based positioning systems but also for fingerprinting-based methods. 

This is the main reason for having such large distance errors in this scenario. The Ekahau 

software calibrates itself with just one received power and there are lots of points in the 

same floor that might have the exact power profile, i.e. in outdoor areas with one access 

point in the origin points which are located on a circle with a constant radio will have the 

same power profile. In indoor areas there are several points with the same power profile 

 

Figure 28: Two set of different perimeters that have the same power profile 
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Figure 29: location of access points and training points for case II of scenario II 

as it can be seen from Figure 28. 

For the second scenario we placed two access points both in hallways. Similar to 

scenario 1 I separated the cases based on number of access points. In case I we put 4 as a 

number of training points and in case II 10 and in case III 27, respectively. Since we had 

two access points this time, Ekahau built its database more accurately. Associated with 

each training points Ekahau was able to save two values for received power at a time.  

Figure 29 illustrates the location of access points and training points for case II of 

scenario II. It is worth mentioning that the set of locations of training points for each case 

was exactly similar to scenario I, so we were able to compare scenarios with each other. 

Table 10 gives us the statistics of scenario II for different set of training points. As 

one can observe from table by increasing the number of training points, error decreases in 

terms of mean.  
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One can observe that by increasing the number of training points from 4 to 27 

mean of error has almost got halved, but still the results are not impressive. Indoor 

positioning system needs to be more accurate due to the customer requirements. Even 

two access points are not enough to build a reliable database. 

Figure 30 shows the CDFs for different cases in scenario II. As you can see from 

this figure at the best 10 % of the time location estimation can be done with errors less 

than1 meter, but in the other hand again in the best case 90 % of the time error is just less 

than 8 meters which means system is still not reliable for location estimation. What 

people are looking for is a more stable positioning system. 

By examining Figure 31 in which all the averages and standard deviation are 

being shown one can easily observe that adding more access points will enhance the error 

significantly. 

Table 10: Error Statistics for different cases of scenario II 

SCENARIO II MEAN(M) VARIANCE(M) RMSE(M) P(90%)(M) 

Case I 6.7953 15.2099 7.8202 11.9 

Case II 4.8541 18.3895 6.4555 10 

Case II 3.1392 12.9932 4.7593 8.4 
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Figure 30: CDF comparison for different number of training points from scenario II 

It can be seen from the figure that the average of error decreases as we have 

expected but standard deviation remains almost the same for all of the cases. 

For scenario III we placed three access points in third floor of Atwater Kent 

 

Figure 31: Comparison of mean and variance of error for scenario II 

 61 



Laboratories and we simulated the scenario with PlaceTool. Again we divided the 

scenario into three different cases according to the number of training points. The 

locations of training points were chosen exactly as what we had for previous scenarios so 

we could compare them in terms of number of access points as well. 

Figure 32 shows case III of this scenario. The locations of access points in this 

scenario were chosen in a way that user randomly might choose them to cover the entire 

floorplan. Statistics of error can be found in Table 11. Figure 33 also will help us 

understanding the difference between different cases in this scenario by comparing their 

CDFs.  

Now with three access points we can observe that with enough training points we 

can almost reach the level of acceptable accuracy that we wanted. Specifically for case III 

in which we had three access points and 27 training points, the Ekahau positioning engine 

was able to locate the mobile terminal with the accuracy of 1.5 meters. Although it is said 

in their documentation that using more than three access points would able software to 

work more accurately, but one can observe that even with three access points 1.5 meter 

accuracy can be achieved. 

Table 11: Error Statistics for different cases of scenario III 

SCENARIO III MEAN(M) VARIANCE(M) RMSE(M) P(90%)(M) 

Case I 6.7283 16.189 7.824 11.8 

Case II 3.3729 10.053 4.6127 8.6 

Case II 1.2301 4.196 2.3761 5.6 
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Figure 32: Location of the access points and training points for case III from scenario III 

Figure 34 shows us the comparison of different cases of this scenario. It can be 

observed that both average and its standard deviation of the error decrease by increasing 

the number of training points as was expected. Another observation is that as the number 

of access points and number of training points get closer to the requirements of the 

 

Figure 33: Comparison of CDFs of different cases of scenario III 

 63 



 

Figure 34: Comparison of statistics for different cases of scenario III 

positioning system, the system tends to show off its normal behavior. 

 

 

4.4 Effect of number of access points 

It is also interesting to review the results from the aspect of number of access 

points. In this section we present the effect of number of access points for a fixed number 

of training points.  

First we start with the case of having four training points. By increasing the 

number of access points we can see that results are getting better. Table 12 summarizes 

the case. 
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Figure 35: Comparison of statistics for four training points 

Figure 35 illustrates the average and standard deviation of error for different 

scenarios which helps us visualizing the difference between three scenarios in term of 

average and mean when the number of access points is being held unvarying. With the 

same set of training points which in this case is four. It is interesting to note that by 

increasing the number of access point from one to three both average and standard 

deviation decreases which was expected. But it is also worth observing that between 

Table 12: Error Statistics of the same case from different scenarios 

CASE I MEAN(M) VARIANCE(M) RMSE(M) P(90%)(M) 

Scenario I 13.1903 31.8125 14.3288 26 

Scenario II 6.7953 15.2099 7.8202 11.9 

Scenario III 6.7283 16.189 7.824 11.8 
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scenario II which had two access points and scenario III which had three access points 

there is almost no difference in terms of average and standard deviation of error. An 

explanation of this could be due to the lack of information for building database for 

positioning software. We will see later on that by having more number of training points 

this phenomenon vanishes. 

Here it can be seen even with four training points it is still possible to locate the 

mobile terminal within a distance of 7 meters. Although it is totally unimpressive but still 

the effect of adding more access points is evident. Results are getting more interesting 

while we move to the cases with more number of training points. 

For instance for a case with 10 as the number of access points we have moved 

from 13 meters to 3 meters in terms of mean of error. Table 13 gives us the statistics of 

this case.  

And the statistical graph is shown in Figure 36 below. It can be seen that by 

increasing the number of access points in this case which we had just 10 as the number of 

training points both average and standard deviation of error decrease.  

Table 13: Statistics of 10 training points 

CASE II MEAN(M) VARIANCE(M) RMSE(M) P(90%)(M) 

Scenario I 13.7574 24.789 16.1235 25 

Scenario II 4.8541 18.3895 6.4555 10 

Scenario III 3.3729 10.053 4.6127 8.6 
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Figure 36: Statistics of 10 training points 

The last case in this category consisted of 27 training points and number of access 

points varying from one to three. Results are shown in Table 14. Significant enhancement 

can be observed from the table. Figure 37 helps us to compare the cases better. It can be 

seen that by increasing the number of access points from one to three, error almost gets 

tenth. Standard deviation also decreases significantly in this case. 

 

 

Table 14: Statistics of 27 Training Points 

CASE III MEAN(M) VARIANCE(M) RMSE(M) P(90%)(M) 

Scenario I 9.5309 21.9344 13.3944 21 

Scenario II 3.1392 12.9932 4.7593 8.4 

Scenario III 1.2301 4.196 2.3761 5.6 
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Figure 37: Comparison of statistics of 27 training points 

4.5 Effect of the location of the access points  

In this section we represent the result of some experiments which were done to 

find the effect of the location of the access points on the accuracy of the geolocation 

process. We created three scenarios for the purpose of studying this parameter. One of 

the patterns was exactly to scenario III from previous section, while the other two were 

different. Figure 38 represents the configuration of the access points for different 

patterns.  
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Figure 38: Various patterns for infrastructure of the WLAN network 

It can be seen that in pattern two access points are close to each other comparing 

with the other configurations. It is expected that for this configuration error rate increases 

comparing to the other configurations. First pattern has an advantage over third pattern in 

a sense of having one access point in a hallway. So in this case all of the training points in 

the hallway have LOS to the access points which enable them to receive a large power 

from access point. This it self will lead to a more accurate database theoretically.  

Table 15: Statistics for different patterns of infrastructure 

SCENARIO\STATISTICS MEAN STANDARD DEVIATION 

Pattern 1 4.46 4.76 

Pattern 2 8.25 8.7 

Pattern 3 3.41 4.08 
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Table 15 gives us the statistics of these scenarios. The disadvantage of this pattern 

is that the training points that are located in the other hallway are far from this access 

points. So in the process of building database,  these points lack from getting power from 

all of the access points resulting in a poor database. We will investigate the statistics of 

these scenarios in details. It should be mentioned that in all of the configurations same set 

of training points has been used to make the scenarios comparable to each other. The grid 

network for training points consists of 25 points while error has been measured over 100 

points distributed all over the place in floorplan. 

As it can be seen from the table second pattern which had the worst configuration 

between all of the configurations resulted in 8.25 meters of error in mean. Here it can be 

 

Figure 39: CDF graphs of error for different scenarios on the effect of configuration 
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seen that although the scenario happened in one story of the Atwater Kent Laboratories 

and three access points were used, result is very poor. The result of this experiment 

mainly suggests us that the configuration of the access points for better accuracy in 

geolocation may not be necessarily the same as the configuration of the access points that 

delivers the best data-rate for telecommunication purposes.  

Figure 39 illustrates the CDF of the error for different scenarios of this 

experiment. It can be observed that since second and third patterns are close to each other 

in configuration, errors follow the same shape for both of them. The only difference is 

that in small distances the probability of error is slightly less for pattern 3.  
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5 Conclusion and Future Work 

In this thesis development of a unique testbed for real-time performance 

evaluation of positioning systems was described. A sample positioning engine was 

analyzed using this testbed and location-estimation error was analyzed, has been 

described in chapter 4. After evaluating the performance of the sample positioning engine 

the following conclusions can be drawn. 

Due to the harsh indoor environment, doing repeatable comparative performance 

evaluation measurements is almost impossible. Another fact which affects the 

performance evaluation of indoor positioning systems is that defining same scenarios for 

different systems is a difficult task to do. Therefore there is a need for unified testbed 

which would be able to define a same scenario for every positioning system, so one 

would be able to compare different systems. 

The testbed is composed of three main blocks, Ekahau positioning software, 

PROPSim real-time channel simulator, and PlaceTool Ray Tracing software. Procedure 

starts with simulating the channel between the access point and training point in 

PlaceTool. Then the results are manipulated with MATLAB® to export to PROPSim. 

PROPSim simulates the channel with tapped-delay-line hardware for the input signal 

from access point. The output of PROPSim directly goes to the PCMCIA card as an input 

of Ekahau. Ekahau reads the power from PCMCIA card and calibrates its database. 

Finally arrival of new power profile would let Ekahau search for the best estimated 

location. 

According to the experiments which are described in chapter 4 the result of the 

real-time performance evaluation and simulated performance evaluation match to a great 
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extent. The results are highly correlated to each other and this correlation turns out to be 

even more if the configuration of the testbed approaches its ideal case which consisted of 

more access points rather than three and more training points rather than thirteen. Next 

remarkable conclusion is that error tends to become a normal in its distribution in each of 

X- or Y-directions which leads us to the fact that distance error is more likely to have a 

Rayleigh distribution.  

The effect of number of access points has been discussed. By increasing the 

number of access points system approaches greater accuracy, as it was expected. When 

the number of access points is less than three, it is hard for the positing system to 

accurately locate the mobile since it uses a version of triangulation or fingerprinting 

methods. 

The effect of number of training points has been discussed in details. As we 

expected by increasing the number of training points positioning takes place more 

precisely. The effect of training point is more important than the number of access points, 

though a combination of them will yield the best result while using the most efficient 

resources. 

Configuration of access points is also important. By changing the location of 

access points in a building one may achieve greater accuracy in terms of positioning with 

the same data-rate that the infrastructure was built for telecommunication purposes. 

Future work can be done on channel model development, in which instead of Ray 

Tracing channel models one can simply use one’s own model and see how accurately it 

works for Indoor Geolocation. Another feature which this testbed is capable of handling 

is that one can define the same scenario for another positioning system and by comparing 
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the results one is able to say which positioning system is more accurate. Use of this 

Testbed is in a way that one could be able to use another methods of positioning except 

fingerprinting. One can define AOA in PROPSim and consequently one is able to use 

AOA methods of positioning. With wider bandwidth one might be able to evaluate the 

TOA method as well, since TOA approaches need a lot of bandwidth to work accurately. 
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7 Appendix A1 

In Ekahau the received signal power is the metric with which the software would 

work. The log-loss model is used then to build the propagation model. The log-loss 

model has three parameters, two regression parameters and the variance of error since a 

zero-mean error term has been used in this software. The mean value of received power is 

then given by: 

dppd ln),,( 10 ββθµ ++= (1) 

In (1) d is the distance between transmitter and receiver and p is the transmitted 

power and θ is the set parameters used. 

Another term which can be used in formula (1), as an indicator to the direction of 

antenna, is parameter δ. Hence the distribution of r as received power is: 
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We already know that for indoor areas due to severe multipath problem the 

parameters for log-loss model can not be derived universally so they should be extracted 

from set of received power profile.  

Suppose that we have a received signal power vector , 

respective distance vector is , the deviation vector 
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1 This appendix is a summary of reference [15] 
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is , and transmitted power is the maximum 

likelihood method is then used to extract data and find the desired metric and 

subsequently location.  

),...,,( )()2()1( nδδδδ= ),...,,( )()2()1( nppp=p

Maximum likelihood estimation (MLE) of these parameters from empirical data 

would give us the missing parameter. 

Since what we have is linear regression model, standard methods for solving 

MLEs for linear regression models can be applied. Hence we have: 
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The likelihood function can be rewritten as follows: 
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where SSE is Sum of Squared Error and by definition it is given by  
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One can prove that maximum likelihood estimation of ,, 10 ββ and 2β which are 

and is independent of the estimation of ,, 10
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By using matrix notation and defining = ,  = , and 

= ,we can find MLE of as follows: 
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where means transpose of matrix Z and is the inverse of matrix Z . 

Finally we have

TZ 1−Z

n
SSE

=
∧

σ . 

The formulas above are true in the case that all of the values for received power 

present and no data is missing. Generally this is not true and some part of the received 

power is missed due to the restrictions that measurement system and devices have, so 

called physical restrictions. Some of these restrictions are  

Rounded received power 

The received power due to the inaccuracy of measurement system is not always 

exactly the value that has been received and most of the time it is rounded to the nearest 

integer value. 

Insufficient number of values for received power 

Due to limitations in physical devices we are not able to receive all of the values 

of power, i.e. most of the time just received power from limited number of channel is 

available to measure. 
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Here is the idea how we can overcome this problem of incomplete data. Assume 

we have the observed vector for received power which represents the 

received power from n different potentially accessible channel. For simplicity and 

without loss of generality we can assume that the first m values are for the case that we 

have measured the received power but it has been rounded to the nearest integer value 

and the next n-m values are corresponding to the case that we have not received any 

power from that channel so we know that the value is less than what we have measured 

by measurement system. Hence we have the following relationships 
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where the accuracy of system is determined by determining valueε . 

The incomplete MLE for this vector is defined as follows: 
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Since there is no analytical solution for maximizing this function the Expectation-

Maximization method, so called EM algorithm, is used to find a local maximum for 

MLE. The EM algorithm can be applied whenever it is possible to evaluate the expected 

value of the logarithm of the complete data likelihood (log-likelihood). In order to do that 

we need to specify the distribution of the missing received power values. In the EM 

algorithm the distribution is obtained by fixing the parameters to some hypothetical 

values, denoted by tθ . The expectation of log-likelihood function is then obtained by 

solving the following equation: 
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)(ln),( θθθ θ l
t

EQ t =  (4) in which ),( tQ θθ is the log-likelihood function, 

denotes the conditional expectation given
t

Eθ tθ , and )(θl represents the likelihood 

function in (3). Next step which is called maximization step is to find the new value of 

parameters, 1+tθ , by the following equation: 
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It has been shown that since the likelihood of the parameters never decreases 

these iterations will converge to a local maximum, if the algorithm converges. Repeating 

these steps consequently will yield a local maximum. 

By taking logarithm of (4) and simplifying that equation one can show that  
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For binned observations it is proven that. 
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where is the cumulative distribution function of a zero-mean, unity variance 

Gaussian distribution.  is the mean received power value according to the log-loss 

model with parameters 
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Since the value of )(ir is known to be within the range 
2

)( ε
±io , its expected value 

is also within the same range. Thus it can be assumed that the expected value can be 

approximated by . )(io

For truncated observations the expectation is given by 
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where notations are the same with previous equations. 

By substituting these values in SESE and simplifying the result, for binned 

observations we can approximate the expected squared error with since the 

range of 
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Knowing the propagation parameter , now we can find the distribution function 

of the location variable by bayes rule. 
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Function π is also the prior distribution function of location variable. 

Since some of the elements of r are truncated we can not apply the formulas 

above to practical cases. Instead we should use observed vector o. The relation between 

these two vectors is as follows: 
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since the denominator is not a function of location , location variable is directly 

proportional to the numerator. In theory since location variable might be continuous in 

l
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2ℜ , no prior uniform function could be found for π . But in practice the location variable 

is always restricted to some areas hence uniform prior function for π can be used. 
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8 Appendix B 

This appendix describes the operation steps that should be taken to run a 

simulation on the testbed.  

The first step in starting a simulation is to run PlaceTool, Ray Tracing software. 

By clicking on the PlaceTool icon a new placement wizard will open. Next step is to load 

you new floorplan of the building that you wish to simulate. This is done by going to file 

and then load new floorplan…. 

This will let you to browse for your new floorplan and load it in your simulation 

environment. After loading the floorplan next step is to define the type of ray tracing you 

wish to perform. By going to edit menu and the indoor ray tracing you can choose 

amongst different indoor ray tracing procedures. For the purpose of this thesis the first 

option, Edit-I Point Ray Trace, is the best option. After choosing this option every click 

with your mouse results in placing a base station as transmitter or receiver. In our 

discussion base stations are representatives of access points located in the building. 

Right-clicking will result in placing a receiver and left-clicking will result in placing a 

transmitter and will start the simulation. Before placing the transmitter and starting the 

simulation one may want to save the configuration of the receivers for next simulation. 

Placing the transmitter has an option that you can set the location of the transmitter 

according to the grids that user can see in the lower right corner of the screen. For the 

case of having three access points we should repeat the process three times for the same 

configuration of receivers. The simulation will give us the multipath profile of the indoor 

wireless channel between transmitter and receiver. PlaceTool automatically saves these 

files in its root directory with the prefix that you specify for each simulation.  
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Since these PlaceTool generated files are not compatible with the power profile 

that PROPSim imports we should reformat the file in such a way that it is going to be 

readable by PROPSim channel modeling software. This is done with the help of 

Matlab®. A piece of code written in Matlab® lets us do the conversion. The code is 

attached to the end of this appendix. Output of this Matlab® code is three .tap files which 

are readable by PROPSim. It specifies all of the properties of each tap so we can even 

change these properties in Matlab® code. At last it should be mentioned that all of the 

parameters of each tap is also definable in the output of the Matlab® code. Now our files 

are ready to be used as PROPSim’s channel profiles. 

Next step is to start with the PROPSim to simulate the multipath between 

transmitter and receiver. First we start with channel modeling software. By opening a 

new channel model editor we can import the multipath profile from Matlab® to 

PROPSim environment. This is necessary if you have not changed the attributes of the 

simulation like center frequency, Channel update response, sample density, mobile speed 

(not necessary in this testbed), and estimated simulation time. If these steps have not been 

taken and these parameters have not been set you can open the .tap file and set the 

parameters and then save it.  

A graph of the channel editor is shown in Figure 40. On the left part of graph you 

can see the multipath phenomenon and on the right hand side model parameters are 

shown. 
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Figure 40: Snapshot of Channel model editor 

 

Next step is to run the simulation editor. This part of PROPSim software is 

responsible for setting the parameters of the environment between transmitter and 

receiver. According to the number of access points that we have in our scenario the block 

diagram of this editor will change. We discuss about the most complicated scenario in 

which we had 3 access points. For inserting blocks first user should click on the edit 

button in mode row and then from add row user should select desired number of inputs, 

channels, or outputs. In this case we had three inputs and three different channels and one 

output. Each access point is going to be connected to an input and channel model is 
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imported from PlaceTool. Since Ekahau is using just one receiver then we just need one 

output in out block diagram. Connecting the respective inputs and channels and outputs 

are done by clicking on the connect button in the mode row and then clicking on the first 

box and then second box and software automatically connects them together. Inputs and 

outputs can be connected to channel models but not together. Figure 41 shows these steps 

graphically. 

For Multiple Inputs Multiple Output (MIMO) purposes one may add different 

inputs to different channels and different outputs to different channels also. In that case 

correlating matrix of the channels should also be provided.  

On the right hand side of simulation editor some properties of the selected block 

 

Figure 41: Snapshot of simulation editor 
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are shown which user can set them for his own experiments. For channel properties, since 

each channel should have a model inside, we should click on the desired channel and then 

form property tab select browse button to import the desired channel between transmitter 

and receiver. Canter frequency, average input level, mobile speed, Channel Impulse 

Response (CIR) update rate, and output gain can also be set for all of the channels in 

property tab (Group Settings). Besides this group setting tab user can individually set all 

of the abovementioned factors for each channel. Each and output has its own property tab 

which let user to set their properties individually as well. 

Last step is to run the simulation. For this purpose we need to run the simulator 

control user interface which lets us start the simulation, stop it, pause it, and even follow 

the simulation step by step. By opening a simulator control box we need to import the 

stored file from simulation editor. After saving this file user can run the simulation. Note 

that once the simulation starts even if user stops the simulation the channel hardware 

inside the PROPSim will keep the same tapped-delay-line configuration. So basically 

from our point of view the channel between transmitter and receiver is what we were 

interested in. this property also lets us using the PROPSim continuously since the 

specification says the input powers to PROPSim should not exceed 15 dbm. The output 

power of common access points in market is 20 dbm which according to the 

specifications of PROPSim can not be tolerated by the hardware of PROPSim for a long 

time.  

When simulation is done and being run for a while, channels between transmitter 

and receiver are set properly and user can use the positioning system. Ekahau, in our 

experiments, was the positioning software which is working with RSS property of the 
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signal along with fingerprinting method. The output of the PROPSim is connected to the 

input of the PCMCIA card of the laptop which Ekahau is being run on. Ekahau reads the 

received power from the PCMCIA card and builds its database. It automatically measures 

the power from different channels and stores them as different elements in its database. 

Starting with Ekahau, user should first make sure that both the client and the 

manager positioning engine software are installed on the machine and the version of the 

driver that machine uses for communicating with the PCMCIA card matches the Ekahau 

requirement. The PCMCIA cards which we used in these experiments were Proxim-Gold 

card. The reason that there cards been used is that they have a small MC-type connector 

on them. If user connects another MC-type connector to the PCMCIA connector the 

internal antenna of the card is shut down automatically which makes these cards suitable 

for our purposes. It is worth mentioning that although this internal antenna is shut off but 

we still have leakage from the connectors and the cables and PCMCIA card itself. To 

reduce all of the effect of these leakages user may prefer to shield the PCMCIA card.  

After making sure about the software part of the Ekahau we start the manager 

positioning engine software. If driver matches Ekahau’s requirements then a green line 

appears in the lower right hand side of the manager positioning engine software along 

with a open text besides that which represents the status of the engine. Next step is then 

to import the floorplan of the building under test. This is done by going to file menu. 

Under file menu the new map option will get the user to browse for the floorplan of the 

building. New floorplan can be in .jpeg, .jpg, or .png format which makes user unable to 

use Autocad generated floorplans. The best approach to this problem is to save Autocad 

file as an .jpg file with all of the details that Autocad would give its user. In the same box 
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Figure 42: Snapshot of Ekahau 

which has been opened to browse for the map user can define the map scale ratio of the 

floorplan. Map scale ratio gives the number of pixels in Ekahau in terms of meters in real 

world, so one can measure the error easily by just using pixels in Ekahau. We will get 

back to the error measurement later in this appendix. 

After importing the floorplan right-clicking on the plan in the left toolbar of the 

manager positioning software will let to define the properties of the floorplan including 

the map scale ratio. One of the most important use of this tab is to select or deselect the 

access points that user wants to include in his experiment. For example if user is using his 

own access points in a building which already has a wireless network, then by going to 

the access point tab of the properties tab user may be able to select or deselect any visible 

access point. Since Ekahau categorizes the access points by their network name and 

MAC address, it is fairly easy to select or deselect user’s access points. This is not 
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Figure 43: Button for different configuration of Ekahau software 

applicable till the first time Ekahau measures the received power from wireless PCMCIA 

card. So basically the first point in training phase is the point that Ekahau measures and 

stores the received power from all of the visible access points, but user can do the 

training part again on the same point after deselecting the undesired access points. Since 

roaming around the building will make some other access points visible for Ekahau, it is 

better to check this option from time to time to make sure that built database is just based 

on the received power from desired access points.  

There are six buttons besides the name of the map in Ekahau manager positioning 

software. We describe the functionality of each in this paragraph in details. Figure 43 

shows these buttons and their respective location. The first button is the edit button 

which makes the user enables to edit the properties of the floorplan and network. This has 

already been done. The second button is the measure button. We have discussed this one 

as well but it is good to remember that if user changes the size of the map he can easily 

change the scale with this button. Another functionality of this mode is that when 

manager is in measure mode, by clicking on the floorplan and move the mouse and 

clicking on another spot in floorplan the window will give us the distance between the 

two locations. One usage of this mode is to measure the distance error between the actual 

place and the estimated place. For example if user is standing on place A on the floorplan  

but Ekahau shows location B on the floorplan as the estimated location, the distance error 
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is simply the length of the line connecting locations A, and B. The third button is the 

rails button. This mode is responsible to define the paths on which user will build 

Ekahau’s database. By clicking on the map a yellow dot will appear and moving the 

mouse and clicking on another spot on the floorplan will let the user to draw a line. 

Basically Ekahau presumes that user will stand on this line while he is updating and 

building his database. Figure 44 illustrates the procedure of defining rails for Ekahau 

along with calibration and error measurement. The fourth button is the calibration 

button. By this time everything should be ready in terms of doing ray tracing, exporting 

the files to PROPSim channel simulator, editing the channel between the access point and 

the PCMCIA receiver card, running the simulation to make the channel ready, setting the 

floorplan’s settings in Ekahau, and defining the paths in floorplan. This mode will let user 

to stand on one of the locations on the defined rails and calibrate Ekahau’s database. By 

clicking on this button a window will open which asks you about the access points you 

want to use. If you choose all, Ekahau will use all of the visible access points to calibrate 

his database, while clicking on active profile will let the user to use his own access 

points. After that if you move the mouse on the floorplan, on the defined rails a green dot 

will appear which is the sign of Ekahau being ready for calibration. By left-clicking 

Ekahau starts to measure the received power from different access points. It is 

recommended that during calibration user rotates slowly. This helps Ekahau building its 

database more accurate since different paths come from different directions. By rotating 

360 degrees, Ekahau will receive almost any profile of each access point so it can build 

its database more precisely. Repeating this procedure increases the number of training 

points and in fact more training points will lead us to more accurate location estimation 
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as we have discussed about it in previous chapters. Figure 44 also shows us an example 

of calibration for a sample floorplan. 

The next buttons are logical areas and accuracy analysis buttons which for this 

experiment we did not have to use them. Logical areas button will define some areas for 

Ekahau which tells the software that the estimated location should be within those areas 

and accuracy analysis will give user some information about the statistics of the 

accuracy of the positioning procedure. 

Next step is to run the positioning engine. This is done by clicking on the track 

active device button on the upper right hand side of the software. This button activates 

the positioning algorithm described above to locate the user according to the new 

received power. In reality of user moves around the building a blue dot will appear on the 

map graphically screening the location of the user. If user moves from one point to 

another this blue dot changes its shape to an arrow to show the direction of the user and 

speed of user. If user runs from a location to another, the length of the arrow becomes 

bigger. 
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The last step is to measure the error. One way to measure the error is to measure 

the distance of the estimated location and the actual location graphically as mentioned 

above. Second way is to use a YAX protocol to connect to the manager positioning 

engine to read the X, and Y elements of the estimated location and compare them to the 

actual values.  

 

 

 

 

 

 

 

 

 

Figure 44: Ekahau's snapshot with rails and calibration points and estimated location 
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9 Appendix C 

A sample MATLAB® code is provided for transforming the Ray Tracing files to 

PROPSim readable files. 

 

clear; 
close all; 
clc; 
jay = sqrt(-1); 
  
%########################################################## 
% I/O to enter the values from the .raw file 
% filename = 'prefix_1.raw'; 
% Alternative to a fixed file name, uncomment the text below: 
filename1 = input('Enter the filename => ','s');  
filename2 = input('Enter the filename => ','s');  
filename3 = input('Enter the filename => ','s');  
%------ enter the whole file in one string ---------------- 
fid1 = fopen(filename1, 'r'); 
  s11 = fscanf(fid1, '%c'); 
fclose(fid1); 
fid2 = fopen(filename2, 'r'); 
  s21 = fscanf(fid2, '%c'); 
fclose(fid2); 
fid3 = fopen(filename3, 'r'); 
  s31 = fscanf(fid3, '%c'); 
fclose(fid3); 
%------ remove the header characters ---------------------- 
k = 1; 
while s11(k) ~= '_' 
   k = k + 1; 
end; 
while s11(k) == '_' 
   k = k + 1; 
end; 
  
j = 0; 
for i=k:length(s11) 
   j = j + 1; 
   s12(j) = s11(i); 
end; 
  
k = 1; 
while s21(k) ~= '_' 
   k = k + 1; 
end; 
while s21(k) == '_' 
   k = k + 1; 
end; 
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j = 0; 
for i=k:length(s21) 
   j = j + 1; 
   s22(j) = s21(i); 
end; 
  
k = 1; 
while s31(k) ~= '_' 
   k = k + 1; 
end; 
while s31(k) == '_' 
   k = k + 1; 
end; 
  
j = 0; 
for i=k:length(s31) 
   j = j + 1; 
   s32(j) = s31(i); 
end; 
%------ convert to numbers and sort ----------------------- 
s13 = str2num(s12); 
s23 = str2num(s22); 
s33 = str2num(s32); 
rt1 = sortrows(s13,1); 
rt2 = sortrows(s23,1); 
rt3 = sortrows(s33,1); 
  
tk1  = rt1(:,1);                % time values in seconds 
ak1  = rt1(:,2);                % amplitude values (linear/no units) 
phk1 = rt1(:,3);                % phase values (in radians) 
dep_angle1 = rt1(:,4);      % departure angle values (in radians) 
arr_angle1 = rt1(:,5);      % arrival angle values (in radians) 
n_cross1   = rt1(:,6);      % number of crossings 
n_ref1     = rt1(:,7);      % number of reflections 
  
tk2  = rt2(:,1);                % time values in seconds 
ak2  = rt2(:,2);                % amplitude values (linear/no units) 
phk2 = rt2(:,3);                % phase values (in radians) 
dep_angle2 = rt2(:,4);      % departure angle values (in radians) 
arr_angle2 = rt2(:,5);      % arrival angle values (in radians) 
n_cross2   = rt2(:,6);      % number of crossings 
n_ref2     = rt2(:,7);      % number of reflections 
  
tk3  = rt3(:,1);                % time values in seconds 
ak3  = rt3(:,2);                % amplitude values (linear/no units) 
phk3 = rt3(:,3);                % phase values (in radians) 
dep_angle3 = rt3(:,4);      % departure angle values (in radians) 
arr_angle3 = rt3(:,5);      % arrival angle values (in radians) 
n_cross3   = rt3(:,6);      % number of crossings 
n_ref3     = rt3(:,7);      % number of reflections 
%########################################################## 
  
npaths1 = length(tk1);              % total number of taps 
ck1     = ak1 .* exp(-jay * phk1);      % construct the complex taps 
ck_db1  = 20 * log10(abs(ck1));     % tap amplitude values in dB 
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maxck_db1 = max(ck_db1) ;             % the maximum value of the 
amplitudes to add to all taps 
  
npaths2 = length(tk2);              % total number of taps 
ck2     = ak2 .* exp(-jay * phk2);      % construct the complex taps 
ck_db2  = 20 * log10(abs(ck2));     % tap amplitude values in dB 
maxck_db2 = max(ck_db2) ;             % the maximum value of the 
amplitudes to add to all taps 
  
  
npaths3 = length(tk3);              % total number of taps 
ck3     = ak3 .* exp(-jay * phk3);      % construct the complex taps 
ck_db3  = 20 * log10(abs(ck3));     % tap amplitude values in dB 
maxck_db3 = max(ck_db3) ;             % the maximum value of the 
amplitudes to add to all taps 
  
maxck_dbi = max(maxck_db3,maxck_db2) ;             % the maximum value 
of the amplitudes to add to all taps 
maxck_db = max(maxck_dbi,maxck_db1) ;             % the maximum value 
of the amplitudes to add to all taps 
  
  
ck_db_new1 = ck_db1 - maxck_db ;       % normalizing the taps so the 
max amplitude is always zero 
ck_db_new2 = ck_db2 - maxck_db ;       % normalizing the taps so the 
max amplitude is always zero 
ck_db_new3 = ck_db3 - maxck_db ;       % normalizing the taps so the 
max amplitude is always zero 
  
% --------------------- Purely for making nice plots ------------------
--- 
tmin1 = 10*(floor(1e9*tk1(1)/10)-1)*1e-9; 
tmax1 = 10*ceil(1e9*tk1(npaths1)/10)*1e-9; 
  
min_ckdb1 = min(ck_db1); 
min_db11  = 10*floor(min_ckdb1/10); 
min_db1   = max(min_db11, -100); 
  
max_ckdb1 = max(ck_db1); 
max_db1   = 10*ceil(max_ckdb1/10); 
  
tmin2 = 10*(floor(1e9*tk2(1)/10)-1)*1e-9; 
tmax2 = 10*ceil(1e9*tk2(npaths2)/10)*1e-9; 
  
min_ckdb2 = min(ck_db2); 
min_db12  = 10*floor(min_ckdb2/10); 
min_db2   = max(min_db12, -100); 
  
max_ckdb2 = max(ck_db2); 
max_db2   = 10*ceil(max_ckdb2/10); 
  
tmin3 = 10*(floor(1e9*tk3(1)/10)-1)*1e-9; 
tmax3 = 10*ceil(1e9*tk3(npaths3)/10)*1e-9; 
  

 98 



min_ckdb3 = min(ck_db3); 
min_db13  = 10*floor(min_ckdb3/10); 
min_db3   = max(min_db13, -100); 
  
max_ckdb3 = max(ck_db3); 
max_db3   = 10*ceil(max_ckdb3/10); 
% ---- this part is just for test how one can write data into a file --
-- 
  
len=length(ak1); 
for i= 1 : len 
    tapnum1(i)=i-1; 
    tapdel1(i)=tk1(i); 
    tapre1(i)=real(ck1(i)); 
    tapim1(i)=imag(ck1(i)); 
end 
  
fid4 = fopen('answer1.tap','w'); 
fprintf(fid4,'; PROPSim Channel Model File, version 1.1 \r\n '); 
fprintf(fid4,' \r\n' ); 
fprintf(fid4,'[Model] \r\n'); 
fprintf(fid4,'CenterFrequency = 2400000000 Hz \r\n'); 
fprintf(fid4,'CirUpdateRate = 26092.1247799443 Hz \r\n'); 
fprintf(fid4,'SampleDensity = 64 \r\n')  ;
fprintf(fid4,'CirCount = 100000 \r\n'); 
fprintf(fid4,'DistributionSeed = 18467 \r\n'); 
fprintf(fid4,'Optimise = maximise delay accuracy \r\n'); 
fprintf(fid4,'ChannelCount = 1 \r\n'); 
fprintf(fid4,'Continuous = true \r\n'); 
for l=1:len 
fprintf(fid4,' \r\n' ); 
fprintf(fid4,'[Tap %g] \r\n',tapnum1(l)); 
fprintf(fid4,'Description =  \r\n'); 
fprintf(fid4,'Delay = constant, %e \r\n',tapdel1(l)); 
fprintf(fid4,'MeanAmplitude = constant, %e \r\n',ck_db_new1(l)); 
fprintf(fid4,'StandardModel = classical \r\n'); 
fprintf(fid4,'AmplitudeDistribution = rayleigh \r\n'); 
fprintf(fid4,'DopplerSpectrum = jakes \r\n'); 
end 
fclose(fid4); 
  
len=length(ak2); 
for i= 1 : len 
    tapnum2(i)=i-1; 
    tapdel2(i)=tk2(i); 
    tapre2(i)=real(ck2(i)); 
    tapim2(i)=imag(ck2(i)); 
end 
  
fid5 = fopen('answer2.tap','w'); 
fprintf(fid5,'; PROPSim Channel Model File, version 1.1 \r\n '); 
fprintf(fid5,' \r\n' ); 
fprintf(fid5,'[Model] \r\n'); 
fprintf(fid5,'CenterFrequency = 2400000000 Hz \r\n'); 
fprintf(fid5,'CirUpdateRate = 26092.1247799443 Hz \r\n'); 
fprintf(fid5,'SampleDensity = 64 \r\n'); 
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fprintf(fid5,'CirCount = 100000 \r\n'); 
fprintf(fid5,'DistributionSeed = 18467 \r\n'); 
fprintf(fid5,'Optimise = maximise delay accuracy \r\n'); 
fprintf(fid5,'ChannelCount = 1 \r\n'); 
fprintf(fid5,'Continuous = true \r\n'); 
for l=1:len 
fprintf(fid5,' \r\n' ); 
fprintf(fid5,'[Tap %g] \r\n',tapnum2(l)); 
fprintf(fid5,'Description =  \r\n'); 
fprintf(fid5,'Delay = constant, %e \r\n',tapdel2(l)); 
fprintf(fid5,'MeanAmplitude = constant, %e \r\n ck_db_new2(l)); ',
fprintf(fid5,'StandardModel = classical \r\n'); 
fprintf(fid5,'AmplitudeDistribution = rayleigh \r\n'); 
fprintf(fid5,'DopplerSpectrum = jakes \r\n'); 
end 
fclose(fid5); 
  
len=length(ak3); 
for i= 1 : len 
    tapnum3(i)=i-1; 
    tapdel3(i)=tk3(i); 
    tapre3(i)=real(ck3(i)); 
    tapim3(i)=imag(ck3(i)); 
end 
  
fid6 = fopen('answer3.tap','w'); 
fprintf(fid6,'; PROPSim Channel Model File, version 1.1 \r\n '); 
fprintf(fid6,' \r\n' ); 
fprintf(fid6,'[Model] \r\n'); 
fprintf(fid6 ,'CenterFrequency = 2400000000 Hz \r\n'); 
fprintf(fid6,'CirUpdateRate = 26092.1247799443 Hz \r\n'); 
fprintf(fid6,'SampleDensity = 64 \r\n'); 
fprintf(fid6,'CirCount = 100000 \r\n'); 
fprintf(fid6,'DistributionSeed = 18467 \r\n'); 
fprintf(fid6,'Optimise = maximise delay accuracy \r\n'); 
fprintf(fid6,'ChannelCount = 1 \r\n'); 
fprintf(fid6,'Continuous = true \r\n'); 
for l=1:len 
fprintf(fid6,' \r\n' ); 
fprintf(fid6,'[Tap %g] \r\n',tapnum3(l)); 
fprintf(fid6,'Description =  \r\n'); 
fprintf(fid6,'Delay = constant, %e \r\n',tapdel3(l)); 
fprintf(fid6,'MeanAmplitude = constant, %e \r\n ck_db_new3(l)); ',
fprintf(fid6,'StandardModel = classical \r\n'); 
fprintf(fid6,'AmplitudeDistribution = rayleigh \r\n'); 
fprintf(fid6,'DopplerSpectrum = jakes \r\n'); 
end 
fclose(fid6); 
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